Tag Archive for supra 2urgse swap

Transmission ECU – Brake Sense Circuit

GPI4 (Brake sense)

This circuit is located behind the center of the Ampseal connector. This circuit is built as a digital input, but we must bring the nominal 12V brake light voltage down to the 5V that the processor pin can handle (~6.5 Volts absolute maximum). R33 forms one leg of the voltage divider, and also limits the current through the Zener diode if the voltage is greater than 5.6 Volts.

  1. Install and solder a 15K Ohm, 1/8 Watt resistor {brown-green-orange, 15KEBK-ND} in R33.
  2. Install and solder a 10K Ohm, 1/8 Watt resistor {brown-black-orange, 10KEBK-ND} in R34.
  3. Install and solder a 5.6 Volt Zener diode {1N4734ADICT-ND} in place of C20, with the banded end towards heat sink. You will have to space it up off the board by about ½” (12mm) to get the leads to fit.

Thats you done!

Megashift brake sense circuit

12v brake sense circuit

 

 

NOTE:

If the input voltage is 14.5 Volts, the voltage divider will reduce this to 14.5 * 10K/(10K+15K) = 5.8 Volts, and the Zener diode further bleeds this off to 5.6 Volts (nominal) with a current of 14.5/15×103 = 0.97 milliamps (the Zener is rated for 1 Watt, which is much higher than we need which is ~1 milliamp * 0.2 Volts = 0.0002 Watts).

If the input voltage is 11.5 Volts, the voltage divider reduce this to 115 * 10/(10+15) = 4.6 Volts, and the Zener diode does nothing. 4.6 Volts is till plenty to trigger the input pin (the acceptable voltage range for ‘high’ on a HCS12 input pin is 3.25 Volts or higher), which means the supply voltage from the brake signal could drop as low as 8.1 Volts and still trigger the input successfully.

 

Transmission ECU – Temperature Circuit

Our next Circuit to build is the Trans fluid temp Circuit.

It is built as a voltage divider (resistance sensing) circuit as we are using Resistance as our input.

This circuit location is called GPI3 and is located near the center of the PCB

  1. Install and solder a resistor, ¼ Watt, 2.49K Ohms {red-yellow-white-brown-brown (on blue), 2.49KXBK-ND} in R23. Space it off the board by about ¼” (6mm). 
  2. Install and solder a 1.0K Ohm, 1/8 Watt resistor {brown-black-red, 1.0KEBK-ND} in R32
  3. Install and solder a 1.0µF, 50V capacitor {399-4389-ND} in C18. You may have to straighten the leads somewhat to get them to fit the holes in the board. Do not let C18 touch R23 once assembled, bend it out of the way as necessary.
  4. Install and solder a 0.001µF, 100V capacitor {399-4202-ND in C19. Do not let in touch R23.

And thats bascially it

Transmission ECU – More circuits (General purpose, PWM, heavy outputs)

The next step is our base circuits for the board. We have 4 General Purpose outputs, GPO1 – GP04 located to centre of the board. The Circuits GPO1 – GPO4 are made up from 1.0K Ohm, 1/8 Watt) in R13, R15, R17, R19 and 4 NPN in Q9, Q10, Q11, Q12

 

 

next we have our VB1, VB2, VB3, VB4 out put circuits. We begin by adding links to R5, R6, R7, R8. We are using 1.0K Ohm, 1/8 Watt resistors instad of wire links as we may want to scope these outputs at a later date.

Next we install and solder 30V Zener diodes {1N4751ADICT-ND} in D11, D12, D13, D14

To Complete the VB Circuits we install the Heatsink. we then Install and solder four large TO-220 size NPN transistors {RFP30N06LE-ND} in Q5, Q6, Q7, Q8 and insulators (under Q5, Q6, Q7, Q8){4724K-ND}) on the heat sink in positions. A liberal amount of heat sink grease is used :)

 

Next we have our PWM1, PWM2, PWM3, PWM4 Circuits. First we solder in our main jumpers in R1, R2, R3, and R4. In R9, R10, and R12 we use 1K ohm resistors and a wire jumper in r11

 

Install and solder 30V Zener Diodes {1N4751ADICT-ND}, D8, D9, D10. We then Install heatsink and solder 3 large TO-220 size NPN transistors {RFP30N06LE-ND} in Q1, Q2, Q4

We finish off the PWM circuits by installing and heatsinking a RFP30N06LE-ND into Q3

 

 

 

design and build..The AA80E Transmission test Bench

Well in Order to Fully test and debug the AA80E Controller, AA80E transmission, and also control functions (paddle shift etc etc) we are building a Transmission test Rig. We started today on the Bare bones of the Frame Work.

 

And the plan..

We will be using a 3HP 2800 3 Phase motor which will be motor than plenty to spin the aa80e with no actually load…ie. the rear diff and wheels and car weight.

The 3phase motor will be controlled using a single phase to 3 phase digital inverter unit. This will give us full control of the motor speed and braking. In theory at 200hz we should see around 5000rpm at the motor, though 3500rpm is all we need for most testing.

Transcooler will be mounted on the test rig, and from the bench we will have our paddle controllers, selector mechanism, load and tps STIMulator and PC to monitor and edit Data (Megashift) from the Trans controller.

This will save a lot of development time and help iron out problems a lot faster than trying to do whilst in car.

so the basic idea is..

components should start arriving this week ;)

 

Marty

Supra 2urgse TFT cluster update

Well TFT Display is almost complete and was test fitted to the car today. We have several data layout screens for Aux and AA80E information. The next part is interfacing data stream to our custom controller ECU which has be STIMulated so far.

We have a few other features now incorporated in the TFT and Control system.

1. G – METER is now functional using precision x,y Acell board

2. Full suspension control – Using our own designed 4 axis stepper contoller and high precision motors with rotary encoders we can now control damper settings on most adjustable coilovers with modifications to adjustment dial hardware and motor mounting. Data can also be used from ecu such as driving mode to determine preset values for damper rating. We will have a full post on this when we have choosen which suspension to run with.

3. Rear Camera – Using power interupt and AV decoder board we now have a functional rear night vision camera display on the TFT when enabled. This basically is initiated when reverse is selected causing AV signal from rear mounted camera to be fed to a seperate encorder board and bused to the TFT controller board. Nothing new but may aswell have it seeing we can ;)

 

The interesting stuff will start to happen after the transmission test bench has been built..

 

Marty – SSi

 

in-Car PC

 

Well with so many various options available for in car PC equipment, we have decided to go down the route of an open source environment with a bit of hacking of a well known system. The system with be accessed via a passive 7 inch capacitative touch-screen and bmw I-drive like main controller. OS will be a flash based affair to speed up start up times. At the moment im an testing various Window and Linux builds to see which have the fastest boot Times. main unit itself takes up a very small footprint of only 180 x 130 x 115mm. Usually applications such as media centre, bluetooth, DAB radio will be run, with sat nav send custom data via serial to the drivers TFT cluster to indicate direction.

Specs are :-

Based on Intel’s Poulsbo/US15W mobile chipset.

CPU: 1.3GHz Intel Z520 Single-Core, Hyper-threaded, Atom CPU

Chipset: Intel US15W (400/533MHz FSB)

Graphics: Intel GMA500 (with hardware acceleration for H.264, MPEG2, MPEG4, VC1, WMV9)
Storage:

Network Features:

 

Power: 5v DC

Screen: 7in Sharp LQ070Y3LG4A 800×480 LCD, 16m colour (24-bit), LED backlit, capacitative touch-screen

Size: 180 x 130 x 115mm

Weight: Approx 650g

Power Usage

1.24A/6.2W during startup

1.09A/5.4W with the clock on screen set at lowest brightness

1.40A/7.0W with the clock on screen set at Highest brightness

0.14A/0.7W in STANDBY set by performing a SYSRQ+O

 

 

So what is it?

The device in question in known as a Joggler. It was built by 02 as a sort of media player/message centre and infotainment unit for the home. Now for the best part, although pretty useless in thier current formatt the have A LOT of potential, especially in the CAR PC World. We purchased ours new for £49.99..yes you read that right!

But some very clever people seen the potential behind the unit. The first thing to do was to find away of bypassing the 02 firmware/software and running our own operating system. More info at http://jogglerwiki.info/

So, how do we go about creating our own system?

Well its actually easy enough. We use a Custom boot loader and an Operating system of our choice. For test purposes we used XP tablet edition. information of bootloader uiling can be found here http://jogglerwiki.info/index.php?title=Efi

Currently we have our Joggler booting and running XP from a 32gb Sandisk USB 2.0 Flash pen in around 1 minute, and running various car PC front ends with ease. The next step now will be to run with a fast USB harddrive to increase boot time.

For details on building the XP image can be found here :-

http://www.jogglerwiki.com/wiki/WindowsXP

 

Now, we used XP as a test image to get to grips with bootloaders and OS images. But, our ultimate goal will be to run the MEEGO platform on the Joggler. MEEGO is slowly becoming an industry standard, with Companies like FORD taking it on for thier in car systems….So why shoulodnt we!                     https://meego.com/about/

Heres a few images of our joggler running XP and riderunner/shotgun front ends.

 

Thats all for now…more to come on GPS, SATNAV, DAB, and gesture control…..

 

Marty

 

 

2URGSE + AA80E + ISF DIFF now fitted to the Supra

Well, the supra now has all the major main mehanical work almost complete. The rear end runs with the ISF torsen differential with ISF shafts and Modified outter joints. Custom Prop setup links to the AA80E. Lots of room around the trans tunnel, and with Carefull planning by Colin ment we retained stock trans mounting points, just a few tweaks to be done now to the motor mounts. We have plenty of room to play with for the exhaust manifolds too.

IS-F Torsen LSD Fittment and JZA80 Differences

Today we got the rear end ready for installation. Keypoints :-

 

1. Differental casings are both physically the same, IS-F LSD bolts straight up to the Stock supra rear subframe. Supra inner joints do not fit the IS-F rear differential.

2. lexus Half shafts are correct length and also straight fit for the jza80 rear hubs.

3. IS-F Half shafts will need to be modified on outter joints to have ZA80 ABS rings fitted (1mm from outter flange circumference to be removed) as on the IS-F the abs pickups are built into rear hub bearing. Supra outter joints do not fit the IS-F half shafts due to a different spline pattern.

4. Stock Supra Rear Prop and centre bearing will be used, with the IS-F front prop (2 ins longer than Auto Prop, though AA80E is 2.1ins Shorter than A340E)

 

Cosmetics – The rear end

After looking at the rear bumper options out there we decided we would build our own. The current offerings were never intended for dual exhaust systems so a fresh approach was needed. With the main bullk of the body being dressed by Ridox, we want to do something clean yet aggressive. The Bumper will have an inetgral diffuser which will house a brake and reverse light. Here is the design we are aiming for.

AA80E 8 speed auto wiring and operational tech info

Again all in PDF format

AA80E-A

AA80E-B

AA80E-C

AA80E-D

AA80E-E

 

Some DI insight

well still awaiting my IS-F tech doc, but heres the basic control system employed by toyota and lexus on thier DI system..

New clothes – dressup time

well something a little boring, test fit of the Ridox kit from knightracer

fitting well…

ridox bodykit

Engine test fit – 2urgse into a Supra…yes it does

Well doing a lot of research before this project began has been paying off. According to the Lexus collision repair manual we had aound 1″ on each bank to play with when sized with the jza80 bay dimensions. So today we placed the lump into the bay..and well..we have a good 1″ of clearance on each bank. As we have also lost the AC pump, this leaves room for future components i.e. PS pump or Superchager. Yes boost is good on a Hi comp engine thanks to Direct injection technology..if we can find a way to contol that off course

The Sump fits exactly were the 2jz did, but we will be taking around 1.5″ from the rear member to bring the engine back another bit. The Engine mount backets also place the mounts quite close to the original 2jz point on on the subframe, which should mean custom mounts to tie things up.

Transmission tunnel and rear bulk head clearance can be summed up with a great saying here “you would get a bus through there bai!!!”

2urgse in a mkiv supra2urgse in a mkiv supraalways have a big hammer at the ready ;)

2urgse in a mkiv supra

2urgse in a mkiv supra

2urgse in a mkiv supra

2urgse in a mkiv supra and the bonnet closes

and even the bonnet closes

 

So next step will be sorting the rear crossmember and mounting

D4-S fueling system and a 11.8:1 compression

What we want to tame :-

 

The 2UR-GSE engine has Lexus D-4S stoichiometri c, four-stroke, direct-injection technology, which combines the strengths of high-pressure direct petrol injection and low-pressure port injection.

The system mixes and matches fuel delivery from the two sets of injectors to provide the ideal fuel/air mixture for all engine load conditions.

It helps optimise performance and fuel economy, and minimise emissions.

D-4 direct injection, as used in Lexus GS 300 and IS 250 engines, boosts torque across the engine revolution range.

The D-4S system used in GS 450h, GS 460, LS 460, LS 600hL and IS F further boosts torque across the range.

The two injection systems have their own fuel supply systems.

When the engine is running under medium-to-high load at lower engine revolutions, both systems are used.

This creates a homogeneous air/fuel mixture to stabilise combustion, improve fuel efficiency and reduce emissions.

In high-load situations the engine uses the direct injection system only, taking advantage of the cooling effect of injecting fuel directly into the combustion chamber and hence improving the efficiency of each charge.

The precise injection control also allows for a high compression ratio by reducing the chance of pre-ignition or detonation.

The IS F D-4S dual injection engine has a compression ratio of 11.8:1, compared with 11.5:1 in the direct-injection GS 300, for better performance.

When the engine is cold, the injection system uses both sets of injectors to ensure quick warm-up of the catalyst and hence optimum purification of exhaust emissions.

Lexus has reduced the size of the port injector body, to provide optimum cross-sectional area for the inlet port.

 


Direct injection hardware:

The direct injection equipment in IS F’s new engine includes compact, high-pressure double slit-nozzle injectors to maximise fuel atomisation.

The injector atomises fuel into a fine mist and expands it to form a large, fan-shaped pattern in the combustion chamber.

This occurs as the down stroke of the piston draws in a large volume of air. The cooling effect of the fuel increases the intake air volume and improves charging efficiency.

Importantly, the intake air forms a vertical swirl current (tumble current) to promote improved air/fuel mixing and hence improve performance and emissions.

The injector has a special coating on its nozzle to resist deposits.

The area where the injector body meets the cylinder head has an insulator, and the injector shaft has two Teflon-coated seals – to resist cylinder pressure, improve sealing performance and reduce vibration.

 

 

Cam timing – Dual VVT-I and VVT-IE explained

The IS F 5.0-litre Quad-Cam V8 engine has an intelligent electric controlled, continuously variable valve timing system on the intake camshafts.

The electric inlet camshaft actuation system – known as Variable Valve Timing – intelligent Electric, or VVT-iE – improves engine performance and fuel efficiency, as well as reducing emissions and engine vibration.

The IS F engine also has intelligent variable exhaust camshaft timing, with hydraulic activation.

The dual VVT-i system is designed to continually optimise intake and exhaust timing, according to engine load, temperature, revolutions and throttle position.

It offers benefits across the engine revolution range, including increased low-end torque and higher top-end performance – the latter by making optimum use of the ‘breathing’ advantages of valve overlap.

Lexus dual VVT-i also contributes to a significant reduction in exhaust emissions, such as oxides of nitrogen (NOx) and hydrocarbons (HC).

Lexus developed electrically controlled VVT-i to provide additional benefits and greater valve timing control.

Hydraulic VVT-i cannot operate below 1000rpm or when the engine is cold.

However, the VVT-iE system will operate across the full engine revolution and temperature spectrum, with a cam response speed of some 50 degrees per second in the retardation phase and 150 degrees per second in the advance phase.

The Lexus 2UR-GSE engine in IS F has a range of 40 degrees of inlet camshaft timing variation (relative to crankshaft angle) and 35 degrees of exhaust camshaft timing variation.

It can vary valve overlap (the period when both the exhaust and inlet valves are open) from a minimum minus 10 degrees to a maximum of 65 degrees.

The IS F inlet cams have 248 degrees duration and the exhaust cams have 244 degrees duration.

The Quad Cam 2UR-GSE engine has separate primary cam chains to drive the inlet camshaft in each cylinder head, and secondary chains to drive the accompanying exhaust camshaft from each inlet cam.

Lexus now offers dual VVT-i engine technology in eight models.

The new-generation dual VVT-i Lexus Quad-Cam engines meet the previously conflicting goals of:

improved torque at low revolutions, and

better use of the expansion ratio in the cylinder and exhaust pulsation to improve engine breathing at high revolutions.

The dual VVT-i system boosts torque at both low and high engine speeds.

It makes full use of exhaust pulsation to increase cylinder filling at high rpm.

The engine ECU controls camshaft advance and retard, via electric motors for the inlet camshafts. It controls exhaust camshaft timing via an oil control valve mounted on the cylinder head and vane-type actuators on the ends of the exhaust camshafts.

There are five main dual VVT-i operating scenarios.

Engine idle: inlet camshaft neutral position, exhaust camshaft on full advance. This eliminates valve overlap, thereby reducing volume of exhaust gas blowback into the cylinder and inlet ports – for stable combustion and improved fuel economy.

Low engine speed range with light to medium load: inlet timing is retarded and exhaust timing is retarded for increased overlap. This creates two parallel effects: increased internal exhaust gas recirculation rate to reduce oxides of nitrogen and re-burn hydrocarbon, and reduced pumping losses and hence improved fuel economy.

High-load range, low-to-medium engine speed: inlet timing is advanced to close the intake valve earlier, reducing the volume of intake air blowback into the inlet ports and improving volumetric efficiency.

High-load range, high engine speed: inlet timing retarded, exhaust timing advanced. Retarding the inlet timing (according to the inertial force of the inlet air) improves volumetric efficiency and hence power.

At low temperatures: Retarded intake timing and exhaust in the full advance position, to eliminate valve overlap to the intake side. Fixing the valve timing at extremely low engine temperatures – and controlling the range as the temperature rises – stabilises fast idle and improves fuel economy.

Yamaha – behind all the great head designs

Below is the technical document produced regading the 2urgse head. There are many advances in the design of this head. Some of these include oil scavenging pump for heads, direct cylinder and port injection, dual VVT-I and dual VVT-IE, tuned equal length runners in plenum, hollow mirror polished cams and valve train, Titanium valves and more..

 

VVTI-E

 

Head

 

 

Intake Plenum

click here to open the PDF

yamaha tec doc

the star of the party arrives…5 Litres of Jap muscle

well after myself and Colin endured a 500mile trip involving boats, tempermental Vans, and a Sat Nav suffering fom extreme Dyslexia we finally have in all its glory the main attraction. 2009 Lexus IS-F 5.0L V8 2ur-gse arrives at SSI  !!!!!

 

now thats me being Smug ;)

 

The donor Car – 1998 Supra MKIV Jspec n/a

So the lucky car in question is a 1998 mkiv supra, a Jap spec non turbo manual. The car has already been raped of its v161 transmission as most do for a 2jzgte manual conversion. The body is flawless but has been subject to being dressed in a silly frock. So the first steps where to remove the dress, n/a 2jzge engine, and interior. As you can see the car was raped of a few other items in its life including  the Faelift rear lights.

So out came the very low mileage N/A 2jz-ge power plant which will return back to life as a Forged bottom end and an ideal replacement for a 2JZ-GTE block. waste not want not as my folks used to say.

Which in turn leaves room for the new engine..

 

 

Modern Technology meets an all time Classic

Yes, the worlds first 2UR-GSE supra is coming this way…stay tuned for the build….